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Abstract—This paper proposes the use of ac polarization for
resonant electrostatic microelectromechanical systems that elimi-
nates the frequency drift caused by dielectric charging and charge
screening. It is mathematically and experimentally shown that an
ac-polarized resonator can sustain stable oscillations when used
in a positive feedback oscillator circuit. We also demonstrate an
oscillator topology that generates a drift-free reference frequency
tone with this technique in spite of using a resonator that exhibits
large frequency drifts under dc polarization. Long-term data are
presented for these drift-susceptible devices, showing a significant
improvement in frequency stability. [2010-0104]

Index Terms—AC biasing, charging, dielectrics, drift, frequency
stability, oscillators, resonators.

I. INTRODUCTION

D IELECTRICS play an important role in many classes
of microelectromechanical systems (MEMS). They are

frequently used for electrical isolation, as structural elements
[1], [2], for enhancing the transduction within electrostatic
actuators [3], [4], and, more generally, as sacrificial layers.
However, it is also well known that dielectrics are susceptible
to various charging phenomena. Charge buildup and charge
motion can screen electrode potentials, affecting the overall
electromechanical properties of the device [5]–[8]. In some
devices, the actuation method itself is susceptible to charging,
such as in capacitive shunt RF switches [9]. Occasionally,
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charged particles may be involved in the experiment, such as in
fluid environments and ionic solutions [10]–[12]. Additionally,
it may not be possible to guarantee a hermetic packaging envi-
ronment, and contamination and humidity can also introduce
detrimental charge. Since charging is not always avoidable,
techniques that can circumvent the undesirable effects of charge
(for instance, [11], [13], and [14]) can be of value.

Recently, SiO2-coated silicon micromechanical resonators
have been shown to possess very desirable frequency-versus-
temperature characteristics due to the oxide-facilitated passive
compensation of stiffness [15]. This improved temperature
performance makes them very useful for frequency reference
applications. However, it has also been noted that these SiO2

coatings are susceptible to charging [5]. Variations in the charge
state cause the resonance frequency to drift with time. Motional
impedance can also change as the charge varies and screens the
polarization voltage.

In this paper, we present a technique in which ac polarization
of the resonator can be used to circumvent charge drifts. We
mathematically discuss how a resonator responds under ac po-
larization and how an oscillator functions under such a scheme
of operation. Experimental data are also presented to support
the theoretical arguments. We propose a practical frequency
reference using this methodology. Finally, we present long-
term frequency-stability observations of a drift-prone device,
showing the elimination of the charge drifts, thus demonstrating
the effectiveness of this ac polarization methodology.

II. SINUSOIDAL AC POLARIZATION

We have previously reported time constants associated with
drifts of frequency in the SiO2-coated microresonators that
are on the order of tens to thousands of seconds. These drifts
vary with temperature and biasing conditions [5]. Since our
previous reasoning suggests that the charge moves due to the
force experienced under the applied dc electric field, reversing
the electric field polarity should reverse the force and the drift.
Consequently, the use of a sinusoidal ac-only (zero dc) polar-
ization source that causes electric fields within the system to
reverse at a regular rate, at a 50% duty cycle, has been proposed
[14]. This method should prevent any net motion of the charge
by balancing forces experienced in either direction. In addition,
if the field reversal takes place at a rate that is much faster than
the time constants associated with charging behavior, one can
expect significant attenuation of the motion of charge. As long
as there is no preference of charge motion toward either field
polarity, the charge will effectively cease to “move.”

1057-7157/$26.00 © 2011 IEEE
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Fig. 1. Schematic for open-loop ac-only probing of an electrostatic resonator.
The polarization source is at a fixed frequency ωB . When this frequency ωB =
0, this source becomes a dc voltage vB . As a result, the mathematics discussed
in this paper can be specialized for dc sources that we are already familiar with.
The positive direction for x is defined.

A similar technique is applied in RF switches, where bipolar
actuation can reduce charging and extend the lifetime of the
devices [13]. In the context of resonators, a local oscillator is
occasionally used to observe resonance in the presence of a
large feedthrough, although this method also incorporates a dc
potential source to reduce the motional impedance of the device
[16]. The nonlinear technique of driving at half the resonator’s
frequency also requires dc to extract the motion signal from the
device [17].

Since the polarization voltage vp(t) is being modulated si-
nusoidally, it is reasonable to expect associated changes in the
spring constant due to the electrostatic spring-softening effect.
However, since the frequency of this modulation is far below
the bandwidth of the oscillator circuitry as well as the resonance
frequency of the device, the spring constant of the resonator
can be treated as a quasi-static value for any short instant of
time. We will discuss the modulation of this spring constant in
Section IV-D.

III. OPEN-LOOP RESPONSE

To test the open-loop response, the resonator is biased with a
sinusoidal polarization source at frequency ωB and excited with
another ac signal at frequency ωA (see Fig. 1). In this open-loop
configuration, the admittance spectrum of the device shows
two resonances (see Fig. 2). These electrical resonances occur
at frequencies ωRes − ωB and ωRes + ωB , where ωRes is the
peak mechanical resonance frequency of the device. It is useful
to mathematically step through the processes that give rise to
such open-loop behavior in order to explain the multifrequency
closed-loop operation in an oscillator.

A. Resonator Drive

The electrostatic force for a single parallel-plate capacitor,
when a voltage V is applied across it, is known to be

F =
εAV 2

2g2
(1)

where A is the transduction area, g is the transduction gap
of the capacitor, and ε is the equivalent permittivity of the
dielectrics between the capacitor plates. For a two-capacitor
system (see Fig. 1), assuming that both input and output

Fig. 2. Resonator electrical admittance magnitude and phase under ac polar-
ization, observed through a network analyzer, for a ωRes ≈ 2π × 896 krad/s
(896 kHz) silicon-only resonator. Here, ωB = 2π × 2 krad/s (2 kHz), and the
resonance peaks appear around 894 and 898 kHz. The location of these peaks
depends on ωB , and they are identified as ωRes − ωB and ωRes + ωB .

electrodes are nominally grounded, the drive force equation is
given by

F (t) =
εA

2(g − x)2
(vp(t) − vdrive(t))2 −

εA

2(g + x)2
v2

p(t)

(2)

assuming a displacement x applied to the device (the direction
defined in Fig. 1). When x is small compared to g and the
polarization and drive are sinusoids

vp(t) = vB cos(ωBt) (3)

vdrive(t) = vA cos(ωAt) (4)

the force equation (2) can be simplified to

F (t) = κ
v2

A

2
+ κ

v2
A

2
cos(2ωAt)

− κvAvB [cos ((ωA−ωB)t)+cos ((ωA+ωB)t)] (5)

where

κ =
εA

2g2
. (6)

This force function can drive the resonator effectively when
one of the following is true:

ωA − ωB ≈ωRes

ωA + ωB ≈ωRes

2ωA ≈ωRes. (7)

In (5) and (7), the terms with 2ωA ≈ ωRes are unlikely to
drive the resonator efficiently since the corresponding force
amplitude is typically very low (vA # vB) compared to the
rest of the terms. One can, however, expect the resonator
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to show small motional impedance when ωA = ωR − ωB or
when ωA = ωR + ωB , where ωR ≈ ωRes is a frequency near
the mechanical resonance peak. As a result, the drive force
expression can be simplified to

F (t) = −κvAvB [cos ((ωA − ωB)t) + cos ((ωA + ωB)t)] .
(8)

The variables ω1 and ω2 can also be introduced as

ω1 = ωR − ωB

ω2 = ωR + ωB . (9)

Since the resonator can be approximated as a linear time-
invariant device, one can model its force-displacement response
as a high-Q transfer function HF (ω), which filters out force
components away from resonance. If either ωA = ω1 or ωA =
ω2 and ωB is much larger than the resonator bandwidth, only
one of the two cosines in (8) will lie close to ωRes. In that
case, one of the two cosines can be dropped in the analysis,
depending on the chosen drive frequency ωA. The result is a
force at frequency ωR in either case, and the simplified forcing
function can be written as

F (t) = −κvAvB cos(ωRt). (10)

Note that, in the dc polarization case (ωB = 0), the two cosines
in (8) coincide, and the driving force has a double magnitude.
In the ac polarization case, however, the simplified motion
response is represented as

x(t) = −κvAvBHR cos(ωRt + φR) (11)

where HF (ω) is modeled as a magnitude HR and phase φR

modification to the input cosine. It is important to note that,
close to resonance, φR ≈ −π/2. At resonance, HR = Q/k,
where Q is the quality factor and k is the spring constant for
the resonator.

B. Output Current Generation

Due to motion x(t), the output capacitor varies as a function
of time C(t). Subsequently, C(t) can be linearized with a
Taylor expansion and represented in the form

C(t) = Co

(
1 − x(t)

g

)
(12)

where Co = εA/g is the zero-displacement capacitance of the
output transducer. This motion mixes with vp(t) again in
the output capacitor and generates output electrical currents
through

i(t) = vp(t)
dC(t)

dt
+ C(t)

dvp(t)
dt

. (13)

Here, it is noted that the second term in (13) does not appear
when the polarization is dc only. In general, the following three
output currents appear:

i1(t)= − vAγ ·(ωR−ωB)·sin ((ωR−ωB)t+φR)
i2(t)= − vAγ ·(ωR+ωB)·sin ((ωR+ωB)t+φR)

ifeedthrough(t)= − ωBCovB sin(ωBt) (14)

where

γ =
κv2

BCoHR

2g
=

ε2A2v2
BHR

4g4
. (15)

The feedthrough term in (14) may be ignored since it is not seen
to participate in oscillations and is possible to electrically filter
since, usually, ωB # ωR. Additionally, one can rewrite

iout(t) = i1(t) + i2(t) (16)

where

i1(t) = −ω1vAγ · sin(ω1t + φR)

= ω1vAγ · cos(ω1t + φR + π/2)

i2(t) = −ω2vAγ · sin(ω2t + φR)

= ω2vAγ · cos(ω2t + φR + π/2). (17)

Here, it is noted that both output currents i1(t) and i2(t) will be
generated even though the voltage excitation vdrive(t) is only at
one frequency in (4), i.e., ωA = ω1 or ω2. When the frequency
ωB = 0, i.e., the polarization is dc only, then the two currents
i1 and i2 merge into one, and the feedthrough term in (14)
disappears.

C. Network Analyzer Measurement

It is interesting to note that the output currents are scaled with
their respective frequency. As mentioned previously, output
currents appear at both frequencies ω1 and ω2 irrespective
of whether the drive signal frequency ωA is at ω1 or at ω2.
However, since the network analyzer source only generates
a drive voltage at one frequency at a time and senses the
output from the device at the same frequency using a lock-
in method, the second output current is not observable in this
manner of open-loop probing. As a result, when one attempts
to observe the voltage-to-current transfer function, one notes
different values of resonator impedance at each resonance. The
apparent resistance at frequency ω1 is greater than that at ω2

due to this scaling of currents in equation set (17).
We can evaluate the apparent motional resistances at reso-

nance (ωR = ωRes), noting that, at resonance, the value of φR

should be −π/2

R1 =
vA

i1
=

1
γω1

∣∣∣∣
ωR=ωRes

=
1

(ωRes−ωB)
4g4

ε2A2v2
BHR

R2 =
vA

i2
=

1
γω2

∣∣∣∣
ωR=ωRes

=
1

(ωRes+ωB)
4g4

ε2A2v2
BHR

. (18)

Under dc polarization, the motional resistance takes on the
value

Rdc =
vA

iout,dc
=

1
4γ ωRes

=
1

ωRes

g4

ε2A2v2
BHR

(19)

which is four times smaller than the motional resistance ob-
served from the ac polarization peaks (at ωB = 0) for the same
value of vB . This notable change occurs due to two effects:
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Fig. 3. Comparison of observed electrical impedance in ac and dc polarization
cases. (a) Mapping open-loop motional resistance of upper (R2, greater than
896 kHz) and lower (R1, less than 896 kHz) sidebands with ac polarization
against the respective resonance frequencies, as a function of changing ωB
from 1 to 200 kHz, at fixed amplitude vB = 10 V. The presented curve fits
(using red data points) are extrapolated to ωB = 0 to compare against the dc
case in (b). (b) Mapping open-loop motional resistance of dc resonance as a
function of changing vB . Theoretically, the experimentally obtained 2.32-MΩ
value for vB = 10 V ac polarization should intersect the dc curve at vB = 5 V.
This is also experimentally seen.

1) The drive force in the ac polarization case is scaled by 1/2
compared to that of the dc polarization case, as mentioned
previously with (10), and 2) the output current is further split
between the two sidebands, as shown in (14).

Fig. 3(a) shows the observed values of the motional resis-
tance at the resonance peak for each R1 and R2 pair in the form
of a combined variable R1,2. Measurements were taken for ωB

from 1 to 200 kHz, with vB = 10 V. A curve fit to the relation
R1,2 ∝ 1/ω is shown, originating from the theoretical result of
equation set (18). However, it was determined via curve fitting
that R1,2 ∝ 1/ω0.81 better indicates the data trend. The reason
for this discrepancy is not understood.

As the two electrical resonances converge for small ωB , the
apparent motional resistances diverge from the aforementioned
theory. This is because ωB is now comparable to the resonance

bandwidth, and the assumption used to obtain (10) is no longer
valid. The drive force from both cosine terms in (8) now
contributes to the motion of the device and to the observed iout

at the frequency being probed by the analyzer. In the limiting
case (ωB → 0), only one electrical resonance exists. This is
experimentally seen as the upper sideband diminishes, i.e., its
motional resistance R2 rises, while the lower sideband motional
resistance R1 drops toward the dc polarization value Rdc for the
vB chosen.

Fig. 3(b) shows the measured motional resistance for various
values of dc voltage vB . We see that the theoretical prediction
of 1 : 4 scaling of the resistance between the ac and dc cases
with the same vB is fairly good (at vB = 10 V). Additionally,
one can predict from the aforementioned equations that Rdc =
R1,2 when vB |dc = (1/2)vB |ac. This is also observed at the
vB = 5 V mark.

IV. CLOSED-LOOP OSCILLATOR

A. Signal Circulation

We start this set of arguments from the force function F (t)
in (10) which we assume to be generated through some as yet
unknown drive voltage waveform in the oscillator system. We
will close the loop on this force function, enforcing positive
feedback, and determine the relationships between the signals.
As shown in the previous section, this force F (t) yields motion
x(t), subsequently generating output currents iout(t) in (16).
This time, the output currents iout(t) are passed through a
transimpedance amplification circuit with some appropriate
gain and phase response. Due to linearity and time invariance
of the circuit, one obtains voltage signals at the same two
frequencies as those present in the output current (17), with
magnitude (v1, v2) and phase (φ1,φ2), which can be modeled
on the specific electrical systems in use

vdrive(t) = v1 cos(ω1t + φ1) + v2 cos(ω2t + φ2). (20)

We reuse the variable vdrive(t) since the output of the amplifier
is applied back to the drive electrode in a closed-loop operation.
To be more specific

φ1 = φR + π/2 + φc1

φ2 = φR + π/2 + φc2 (21)

where φc1 and φc2 are the phases added by the circuit at each of
the two frequencies. The exact values for v1 and v2 are set by a
variable gain element within the circuit and are thus determined
during the loop operation.

Generalizing the summarized forcing function from (8), the
following drive force F (t) is obtained for the vdrive(t) in (20):

F (t)=−κv1vB[cos ((ω1−ωB)t+φ1)+cos ((ω1+ωB)t+φ1)]

− κv2vB [cos ((ω2−ωB)t+φ2)+cos ((ω2+ωB)t+φ2)] .

(22)

The cross-mixing components of the two cosines within
vdrive(t) are also ignored in this since they do not have sufficient
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Fig. 4. Visualization aid for simplified oscillator signals. The signals and their
respective dominant frequency components are indicated. The two mixer blocks
do not function as real mixers in this diagram but only indicate frequency
intermodulation from the inputs to the outputs. Note that, although there are
two dominant electrical frequencies ωR ± ωB , only one dominant mechanical
frequency ωR exists in the system.

amplitude to cause actuation. Replacing the values of ω1 and ω2

into the aforementioned expression yields

F (t) = −κv1vB [cos ((ωR − 2ωB)t + φ1) + cos(ωRt + φ1)]

− κv2vB [cos(ωRt + φ2) + cos ((ωR + 2ωB)t + φ2)] .

(23)

Only the ωR terms in the aforementioned expression lie within
the resonator bandwidth. The other two terms (ωR ± 2ωB) can
be placed outside the resonance response band with a suitable
choice of ωB . As a result, the drive force is generated at the
same frequency ωR that we began the closed-loop arguments
with, thus completing the loop. A visualization aid is presented
in Fig. 4 showing the interaction between various frequencies
within the system. With this figure, we can see how the elec-
trostatic transduction nonlinearities cause heterodyning, i.e.,
frequency mixing, of the signals around the loop.

We have successfully tested several ac-polarized devices with
oscillators (circuit design previously discussed in [18]), and
we have experimentally observed behavior consistent with the
aforementioned simplified theory. A representative result is
shown in Figs. 5 and 6 where a silicon-only (hence, drift-free)
resonator with an 896-kHz resonance frequency was employed
to produce oscillations under a 10-kHz polarization frequency.

B. Oscillator Phase Condition

For successful oscillation, the resulting force F (t) in (23)
must be of identical magnitude and be in phase with the
originating force in (10), i.e., the loop gain is exactly one. A
simplified forcing function can be constructed from (23) to
yield

F (t) = −κvB(v1 cos φ1 + v2 cos φ2) · cos(ωRt)

+ κvB(v1 sinφ1 + v2 sinφ2) · sin(ωRt). (24)

Fig. 5. Oscillator output spectrum for a silicon-only resonator with ωRes ≈
2π × 896 krad/s (896 kHz) with ωB = 2π × 10 krad/s (10 kHz). Data were
acquired with a 30-Hz bandwidth. The dominant dual electrical oscillation
peaks ωR ± ωB are visible near 896 kHz. In addition, we see low-frequency
noise appearing from harmonics of the polarization signal and nearby noise
sources. The harmonics of the dual oscillation peaks are also apparent around
1800 kHz.

Fig. 6. Close-up view of the oscillator output spectrum shown in Fig. 5. These
data were acquired with a 10-Hz bandwidth. The dual electrical oscillation
peaks are visible at ω1 = ωR − ωB and ω2 = ωR + ωB , and AM and FM
artifacts are visible at ω1 − 2ωB and ω2 + 2ωB . Additional spurs are also
apparent at ωB intervals (peaks marked with ∗), which are likely due to
intermodulation of the various signals present in the system. The sources of
most of the smaller unidentified spurs in this spectrum are unknown.

This can be rewritten as

F (t) ∝ cos(ωRt + φFB) (25)

where the feedback phase is

φFB = tan−1

(
v1 sinφ1 + v2 sin φ2

v1 cos φ1 + v2 cos φ2

)
. (26)

Since the original force in (10) had a zero phase, we must
impose the condition φFB = 0 for positive feedback. Thus, the
following relation is obtained:

v1 sinφ1 + v2 sin φ2 = 0. (27)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 JOURNAL OF MICROELECTROMECHANICAL SYSTEMS

The expressions for φ1 and φ2 can be substituted from equation
set (21). Here, since the phase shifts φc1 and φc2 are fixed by
the circuit, the resonator must adjust its phase φR to satisfy this
overall phase condition. With some manipulation of (27), the
following phase solution can be obtained:

φR = −π

2
− tan−1

(
v1 sinφc1 + v2 sinφc2

v1 cos φc1 + v2 cos φc2

)
. (28)

It is concluded that the oscillator phase shift determines the op-
erating point of the resonator. The one-to-one phase–frequency
relationship of the resonator then helps determine the
operating frequency ωR of the loop. Subsequently, the
amplitude–frequency relationship determines the motional im-
pedance of the device seen by the circuit. The gain controller
within the circuit then determines and sets the appropriate gain
to determine the values of v1 and v2 for a loop gain of one.

Although it is not necessary to attain the lowest motional
impedance of the device, it is best to operate near the resonance
peaks, where one expects that φR ≈ −π/2. This implies that
the phase shifts from the circuit φc1 and φc2 must be small.
Making this small-angle assumption, (28) can be simplified to

φR = −π

2
− v1φc1 + v2φc2

v1 + v2
. (29)

C. Motional Conductance Matrix and Gain Condition

In the simplified small-phase-shift case discussed in (29),
if φc1 and φc2 are both set to zero, simply φR = −π/2 is
obtained. This greatly simplifies equation pair (21) to φ1 =
φ2 = 0 and the force equation (24), resulting in

F (t) = −κvB(v1 + v2) cos(ωRt). (30)

This phase assumption also provides a simplification for equa-
tion set (17) to

i1(t) = ω1γ(v1 + v2) · cos(ω1t)

i2(t) = ω2γ(v1 + v2) · cos(ω2t) (31)

and corresponding vdrive,1(t) and vdrive,2(t) can be obtained
from (20)

vdrive,1(t) = v1 cos(ω1t) = Ramp · i1(t)

vdrive,2(t) = v2 cos(ω2t) = Ramp · i2(t) (32)

where the transimpedance gain of the circuit Ramp at both
frequencies is also assumed to be equal. Unlike the open-loop
analysis, both drive voltages exist simultaneously in the oscilla-
tor since both currents appear simultaneously as well. Equation
(30) indicates that the effects of the two drive voltages are
simply additive, even though we are dealing with a nonlinear
system.

The aforementioned expressions provide a path in determin-
ing the relative amplitudes of the two signals

i1
i2

=
v1

v2
=

ω1

ω2
. (33)

One also notices a form of cross mixing of inputs and outputs
occurring within the device, which may be expressed com-
pactly as

[
i1
i2

]
= Gresonator

[
v1

v2

]
(34)

where Gresonator is the motional conductance of the resonator,
which is now a 2 × 2 matrix

Gresonator = γ

[
ω1 ω1

ω2 ω2

]
. (35)

This matrix form of Gresonator enables either of the two input
voltages to contribute to both the output currents. The conduc-
tances γω1 and γω2 are directly observable through the network
analyzer as described by equation pair (18). Meanwhile, equa-
tion pair (32) may also be expressed in matrix form as

[
v1

v2

]
= Ramp

[
i1
i2

]
(36)

following which the algebraic manipulation of (34)–(36) gives
us the required amplifier gain

Ramp =
1

γ(ω1 + ω2)
=

1
2γωR

. (37)

Note that this required gain is double the dc motional resistance
presented in (19) (ωR ≈ ωRes). This is a useful result as it
implies that no change in the oscillator gain is required in
converting from dc polarization to ac polarization, as long as
the rms value of the polarization vp(t) in the ac case (which is
vB/

√
2) equals the dc polarization voltage (simply vB) in the

dc case.

D. Modulation Artifacts

As the polarization voltage vp(t) varies sinusoidally, the
electrostatic spring-softening effect causes periodic modulation
of the frequency ωRes. Since the softening is known to be a
squared function of the polarization voltage, the modulation oc-
curs at 2 × ωB . The spring-softening effect is inversely related
to the stiffness of the mechanical spring in the system, so this
frequency-modulation (FM) effect should be reduced in high-
stiffness bulk-mode resonators.

In addition, the closed-loop drive force (23) is not a simple
sinusoid but is composed of three dominant excitation fre-
quencies. Under the linear resonator model, some mechanical
excitation at the additional (ωR ± 2ωB) forcing frequencies is
expected. A high-quality-factor resonator should easily reduce
these amplitude-modulation (AM) effects.

Oscillators typically have a gain controller that actively
adjusts the amplifier gain so that oscillations are sustained.
Since the output signal from the resonator is composed of two
sinusoids, the envelope of the output signal shows a “beat” at
ωB , and the envelope of output power shows a variation at
2 × ωB . This envelope can be misread by the gain controller
as a variation in the output power, and it may actively attempt
to adjust for the variations. Although the gain controller can
be designed with a very low bandwidth, small attempts to
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Fig. 7. Proposed oscillator topology with an external polarization source.
The mixer and filter help generate a single-tone output that is independent
of ωB .

adjust the periodically changing envelope lead to a periodically
changing amplifier gain. This creates additional AM.

Both these AM and FM effects occur at 2 × ωB and con-
sequently overlap in the spectral domain. Electrically, these
artifacts are visible in the output spectrum of the oscillator,
positioned 2 × ωB away from the dominant output tones in
Fig. 6. Additional artifacts can appear due to frequency inter-
modulation through amplifier nonlinearities.

V. SIGNAL CONDITIONING FOR SINGLE-TONE OUTPUT

A. External AC Polarization Source

The power spectrum of the oscillator previously described
primarily shows two peaks at ωR − ωB and ωR + ωB (i.e., ω1

and ω2). However, in a directly usable frequency reference, the
output frequency should ideally be a single-tone sinusoid at the
resonator frequency ωR, and the dependence on the external
polarization frequency ωB must be removed.

The generation of a single-tone output signal has been pre-
viously explained in [14]. As shown in Fig. 7, the oscillator
output is mixed with the polarization signal to regenerate a
dominant tone at the mechanical resonance frequency ωR.
However, this mixed signal includes many spurs at multiples
of the bias frequency around the ωR carrier. These spurs
can be eliminated by placing a narrow-band filter at the fre-
quency ωR. As described in [14], a phase-locked loop (PLL)
was used to perform this filtering task. The output signal
from the PLL’s voltage-controlled oscillator (VCO) is a 0–5-V
square waveform, which can then be used as a frequency
reference.

In the case of a PLL-based filter, the loop filter component
helps determine the overall filter bandwidth. Choosing a narrow
bandwidth loop filter eliminates the modulation artifacts and
other noise sources present in the spectrum that are away from
ωR. However, using a wider bandwidth loop filter enables
the VCO output phase noise to follow the oscillator’s phase
noise. These two tradeoffs regarding loop filter selection can be
resolved by using higher polarization frequency ωB (which can
be facilitated by higher frequency resonators). Doing so moves
the spurious frequency content further away from ωR, such that
a higher bandwidth loop filter still achieves sufficient sideband
reduction, while allowing the VCO to follow the oscillator-
defined phase noise.

Since, after filtering, the AM and FM sidebands (see
Section IV-D) are significantly attenuated, very little modula-
tion is expected at the output.

Fig. 8. Oscillator topology modified from Fig. 7 for internal/bootstrapped
polarization to remove the dependence on an external polarization oscillator.

B. Internal AC Polarization Source

The previously described oscillator topology provides a
method to build a drift-free temperature-compensated oscilla-
tor. However, it requires the existence of an additional oscillator
to generate the polarization source frequency ωB . Since an
additional oscillator may not be affordable in many cases and
indeed could be a handicap for certain practical stand-alone
systems, we propose the following bootstrapping methodology
(shown in Fig. 8).

The VCO in the PLL generates a square wave at all times,
irrespective of having a successful frequency lock to any input
signal. When the MEMS oscillator is not started, there is no
input signal to the PLL, and the VCO signal has a very noisy
and arbitrary frequency. This output square wave, however, can
be used to generate a lower frequency polarization signal using
a digital divide-by-N , followed by amplification and filtering
circuitry. This new lower frequency signal feeds the resonator,
which then allows the oscillator to start up. Once the oscillator
is started, the PLL can obtain the lock, and the VCO output
frequency changes. This change in the VCO frequency does not
have an effect on the dominant tone at the PLL input, since that
is always generated at ωR after the mixer.

VI. FREQUENCY-STABILITY RESULTS

The device that was chosen for testing the fully ac oscillator
methods has previously demonstrated very large drifts [5] under
dc polarization. This is a double-ended tuning fork resonator
with 0.42 µm of wet thermal SiO2 and has a resonance fre-
quency of about 1.077 MHz. All testing was performed in a
temperature-controlled chamber at 40 ◦C. The device is sealed
at the wafer level using “epi-seal” encapsulation [19]. Res-
onators built with the “epi-seal” encapsulation technology, in
its oxide-free version, have previously demonstrated excellent
frequency stability over very long periods of time [20].

A. External DC Polarization

The resonator was first tested under dc polarization with a
conventional oscillator (the circuit discussed in [18]) to check
for the familiar frequency drifts that were previously identified
in [5]. As shown in Fig. 9, the oscillator frequency immediately
moves away from the starting frequency and appears to be mak-
ing a very slow approach to some eventual steady-state value
with a very large time constant. In this case, about −90-ppm
drift is observed in 42.5 h. It has been previously determined
that these transients in frequency are due to mobile charge [5].
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Fig. 9. Example of the large frequency drift in a 1.077-MHz SiO2-coated resonator under dc polarization. The result of (external) ac polarization on the same
device is also presented here, exhibiting the significant improvement in performance. Both data sets are normalized to their respective start frequency. The complete
ac polarization data set used for this figure is shown in Fig. 11.

Fig. 10. Schematic of the modified oscillator used in ac polarization testing.
A high-pass current filter (RFilter = 3.3 kΩ, CFilter = 100 pF, and 480-kHz
cutoff frequency) between the resonator output and the feedback amplifier
permits high-frequency currents to pass to the amplifier, while attenuating low-
frequency currents such as the polarization feedthrough (14).

These transients reappear when the oscillator is turned off and
on or when the dc polarization potential is changed.

B. External AC Polarization

The oscillator used for the dc experiments was subsequently
slightly modified with a passive first-order current filter (see
Fig. 10) to reduce the large polarization feedthrough current
[identified in equation set (14)]. The mixer and PLL were also
added after the oscillator, as shown in Fig. 7. As a result,
the same device was tested with the same physical oscillator
circuit (operational amplifiers and passives). The PLL was im-
plemented with a first-order loop filter and a Texas Instruments
4046 PLL integrated circuit (IC) on a custom printed circuit
board.

The test was performed for over 500 h (21 d), and very
good stability was observed (see Fig. 11). The large long-time-
constant drift in frequency is no longer present. A linear fit to
the data exposes a 0.15-ppm/week drift trend that is otherwise
lost within the variance around the average frequency. The data
shown in this figure complement the short-duration (40 h) data
set shown in [14] with a higher stability and longer duration
result, increasing our confidence in the efficacy of this system.

C. Internal AC Polarization

A basic system was assembled to demonstrate the method
discussed in Section V-B. We used a digital-counter-based
divider on a prototyping breadboard, followed by a Krohn-Hite
model 3750 filter (Krohn-Hite Corporation, Brockton, MA)
and a custom-built audio amplifier (National Semiconductor
LME49811). The gain of the audio amplifier was found to
drift over time, which changed the amplitude of the generated

polarization voltage. A simple gain controller was incorporated
to improve the amplitude stability of this source.

The result of long-duration stability testing of this system
over 380 h is shown in Fig. 12. Again, we see that the
large long-time-constant drift is no longer present. The exact
source of the very small residual drift (linear fit indicates about
+1.3-ppm total drift or 0.57 ppm/week) is still under investiga-
tion. We suspect that the amplification and filtering electronics
in the polarization generation path are responsible for this
residual drift.

The variance in the raw frequency data in Fig. 12 is no-
ticeably larger than that in Fig. 11. This difference might
be attributed to distortion from the audio amplifier that was
used in the polarization feedback path (the polarization signal
output from the amplifier is visibly distorted) or to a slight
modification to the PLL filter parameters that occurred between
these two experiments.

VII. CONCLUSION

MEMS often incorporate various dielectrics to take advan-
tage of their mechanical and electronic properties. However,
these devices are known to occasionally show problems that
stem from charge trapping and charge movement on surfaces
and within the bulk of the dielectric material. In this paper, we
have discussed how ac polarization, with zero dc, can circum-
vent these charging issues for electrostatically transduced reso-
nant MEMS. Furthermore, we have presented the mathematical
theory behind open-loop probing, as well as closed-loop oscil-
lator operation, for ac-polarized resonators. Although, under ac
polarization, multiple frequencies participate in the system, the
devices still operate under the basic assumptions of linearity.
This paper has also supported the stated theoretical arguments
with experimental data, showing the successful operation of
self-sustaining oscillators.

Although much work still needs to be performed on predict-
ing and characterizing the phase noise performance of these
oscillators, it has been observed [21] that these oscillators are no
longer sensitive to low-frequency noise. Instead, it is the noise
in the ac polarization source that is most relevant in this case.
Even though the demonstrated experimental oscillators are not
optimized for noise performance, we have observed significant
improvements in frequency stability of drift-susceptible SiO2-
coated resonators over long periods of time. Despite some
additional overhead required in realizing the proposed systems,
the additional electronics should be possible to implement
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Fig. 11. Long-term observation of output frequency measured using a counter, for the oscillator topology from Fig. 7. This test was performed on the same
SiO2-coated device that was used with dc polarization in Fig. 9, with the same physical oscillator circuit. Note that the very large frequency drift is no longer
present, even though the same charge-susceptible resonator is used.

Fig. 12. Long-term observation of output frequency measured using a counter, for the oscillator topology from Fig. 8. Again, this test was performed on the
same SiO2-coated device that was used with dc polarization in Fig. 9, with the same physical oscillator circuit board. Although the very large frequency drift is
no longer present, there is a very small residual drift in the frequency.

on application-specific ICs. The generalized methodology de-
scribed in this paper can be applied to other systems to realize
improvements of long-term stability with respect to charge
drift.
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